从四方面推进我国工业大数据应用2
从四方面推进我国工业大数据应用(二)
(2015年12月10日)
二、当前我国工业大数据应用存在的问题
(一)挖掘工业大数据价值的核心技术体系尚未建立
工业大数据的挖掘需要一整套技术体系作支撑,任何一环的缺失都将降低工业大数据的应用价值。面对不同的生产对象,基于数据的汇总、分析、预测和决策等,都对应着不同的数据处理机理、模型和方法。特别是信息物理系统(CPS)的应用,将搭载一套多维度的智能技术体系,提升整个数据处理流程的智能化水平,实现虚拟和现实生产空间的映射与融合。当前,我国还处于促进制造业智能化升级的探索阶段,对大多数企业而言,能够自我感知、自我记忆的数据采集感应系统尚未建立,处理复杂数据结构的数据处理技术仍需优化,高效的数据库维护和管理机制还需完善。因此,我国需进一步规划和探索建立挖掘工业大数据价值的核心智能技术体系,以支撑智能制造环境下对工业生产与管理的高效决策。
(二)行业企业内外部数据整合应用不足
目前,我国大数据整体应用仍处于初级阶段,条数据采集应用较为广泛,块数据应用较为缺乏,行业内部数据和外部数据整合应用不足,跨行业的互动聚合效应尚未显现,对于工业大数据亦如此。《中国大数据发展报告》显示,当前60%以上的企业把内部业务平台数据、客户数据和管理平台数据作为大数据应用的主要来源,只有约1/3的企业使用外部互联网数据或其它行业企业数据,还没有形成企业内外融合互动的数据采集与处理模式,外部数据应用水平有待进一步提高。
(三)企业各部门之间数据集成应用难度较大
调研结果表明,部分工业企业各部门之间信息孤立情况比较严重,基本数据都由系统采集和统计,但不同的生产数据由不同部门的工作人员填报,加之每一个部门的关注点不同,部门之间数据尚未打通和整合,致使数据利用率极低。对工业企业大数据应用来说,内部数据的集成应用是实现生产、业务协同的首要环节,而目前我国众多企业内部信息的不互通,无疑为工业大数据的应用增加了一道门槛,也降低了企业优化转型的速度。
(四)工业大数据加工服务业实力较为薄弱
基于客户需求、生产环境的不同,不同行业、不同企业对数据的采集、处理过程和挖掘方向也各不相同,因此,工业大数据的应用与早期ERP等软件在企业中的应用类似,必须针对每家企业进行独立的设计、改造。这就对工业大数据加工服务业提出了更高要求——需兼备工业行业专业知识与大数据处理能力。目前,我国工业大数据的开发应用大多由工业企业自主探索,比如,尚品宅配、海尔、红领制衣等企业,专业数据加工服务企业的作用尚未显现。同时,不少数据加工服务企业的前向预测能力还有待加强,目前大多数只是将数据用于后向披露与原因分析。
(摘编自 中国经济时报 作者:谭霞 庄金鑫 / 编辑 严进军)