论坛与新闻
论坛与新闻

工业大数据:始于业务,止于业务(2)

工业大数据:始于业务,止于业务(二)

201676日)

业务数据的建模方法

从业务系统中抽象出稳定的数据结构,一直是业务数据的管理和组织的基础核心,业界主要采用IRP和EA两种建模手段进行数据结构设计。IRP理论从组织机构入手,识别各部门的用户视图(单据或报表),通过对业务单据或报表中数据项的识别和归纳得到相应数据模型;EA理论从主辅价值链入手,从而得到最末端流程,并通过关键活动产生的数据进行分析得到相应的数据模型。IRP相对于EA属于自底向上的轻量级的建模方法,主要解决数据建模问题,EA属于自顶向下的重量级的建模方法,主要解决业务建模、应用建模和数据建模,数据模型只是企业模型的一部分。

美林公司目前采用EA+IRP的方式进行企业数据建模,从企业主价值链入手并导入最佳实践,根据二、三级流程关键活动节点识别核心数据,从核心系统应用入手识别核心数据关键属性和集成关系,从而快速得到企业级的数据视图。

图2

业务数据的应用模式

1、业务数据的查询浏览:业务数据通过线上采集或线下导入进入数据中心后,供业务人员进行查询、浏览,并能支持漫游和穿透。

2、业务数据的共享集成:由于各业务系统按照各自业务域进行建设,企业价值链的协同势必涉及各业务域之间的数据集成和交互。利用业务数据集中管理将过去点对点的集成变成总线式集成,提升系统集成的效率和可靠性。

图3

3、业务数据的统计分析:业务数据结构化以后最大的价值是统计分析,将业务记录通过统计变成业务规律用以指导业务改进。传统上我们利用Excel工具就开发了大量的离线数据的统计应用,现在各种BI工具更是提供了在线统计应用能力。

图4

(原题目:观点|工业大数据:始于业务,止于业务)

(续完)

(摘编自:微信公众号 大数据每日精选 美林数据 / 编辑 严进军)