论坛与新闻
论坛与新闻

工业大数据分析的误区与建议(上篇)(2)

工业大数据分析的误区与建议(上篇)(二)

(2016年9月7日)

工业数据分析与商业数据分析:一字之别?

当前很多流行的大数据理念来自于互联网和商务领域,不少分析技术也是针对商业大数据。但工业大数据与商业大数据在很多地方存在比较大的差别,郭朝辉等行业专家对此从不同角度进行了深刻剖析,我们将其归纳为如下表所示的四个维度。

图2

1)研究对象不同:工业领域以物理系统(物理实体或环境)为中心,研究动态过程的规律和因果关系,而商业大数据以人造系统(人或流程)为研究对象,试图理解其中的行为模式。当然,工业领域的一些简单产品(如个人电子消费品)制造业和商业产品在产品定义、营销和售后有不少相似之处,但对于复杂产品(如高端装备、高精度制造),区别是非常显著的。

2)现有基础不同:在工业领域,人们对生产过程的研究一般比较深入,形成了很多系统化的中观、微观机理模型,领域知识也比较丰富。客观来讲,对物理系统本身的突破性知识发现难度很大。工业数据中体现出来的规律常常难以突破现有生产技术人员的认知范围。与之相比,商业领域中仅存在一些宏观理念,定性描述人的行为偏好和经济活动规律,给大数据分析留有广泛的提升空间。

3)新的驱动力不同:感知技术的发展和普及是工业大数据的驱动力,现有的工控技术很难处理大数据量的挑战,大量的监测数据也为大数据分析带来与业务数据融合分析的机会。而互联网的发展为企业带来与客户交互的新渠道,极大促进了商业大数据分析的发展。工业领域的大数据大多是具有时空信息的结构化数据,且背后有明确的物理结构(如系统动力学、网络拓扑关系等),对时间序列、时空模式、序列模式等结构模式挖掘非常重要。而商业大数据分析大多集中在结构化的数据仓库表或非结构化数据(如文本、视频),数据间除了实体关系和部分时空信息外,结构性关系较弱。

4)对分析技术的要求不同:工业系统的实时性高,动态性强,对分析结果的精度要求高,很难接受概率性预测,而商业应用常遵循大数原则,概率性的分析就可以为运营提供很大的帮助。不同工业应用场景对技术指标的要求也不同,比如在风机领域,大部件的故障检测报警已经在PLC中实现,大数据分析只有提前若干小时的故障预警才有意义;油气管道泄漏检测中,泄漏发生后的及时报警也很有意义,但其要求零漏报、极低的误报(管道深埋地下,误报会给一线工作人员带来很大工作量);在抽油机监测分析中,可容忍分析算法对一些罕见或复杂故障类型的无法研判(类似漏报),但分析算法可以研判的出示功图异常的的准确率应该是100%(这样就可以降低70~80%的重复性工作)。

(未完待续)

(原创:田春华 摘编自:微信公众号 昆仑科技K2Date / 编辑 严进军)

作者介绍

田春华:昆仑智汇数据科技(北京)有限公司首席数据科学家。2004年1月清华大学自动化系博士毕业。2004年-2015年在IBM中国研究院,负责数据挖掘算法研究和产品工作,在高端装备制造、石油石化、新能源、航空与港口等行业,帮助中国、亚太、欧美领先企业,成功实施资产管理、运营优化、营销洞察等各类数据分析项目。发表学术论文(长文)82篇(第一作者42篇),拥有36项专利申请(10项已授权)。研究兴趣是数据挖掘算法与应用。