论坛与新闻
论坛与新闻

工业大数据分析的误区与建议(上篇)(3)

工业大数据分析的误区与建议(上篇)(三)

(2016年9月9日)

工业数据分析的价值实现之道

综上所述,工业大数据分析更应该抱着“小数据”的心态,敬畏机理模型和领域经验,把数据分析模型与机理模型充分融合。数据分析对工业领域知识的帮助主要体现在如下3个渠道:

1)物理过程和业务过程的融合。能将物理量与经营过程量(如产品质量、生产效率、设备可靠性等)的关系定量化,突破现有生产技术人员的知识盲点,实现过程痕迹的可视化。

2)对于物理过程环节,重视知识的“自动化”,而不仅仅是知识的“发现”。将领域知识进行系统化管理,通过大数据分析进行检索和更新优化;对于相对明确的专家知识,借助大数据建模工具提供的典型时空模式描述与识别技术,进行形式化建模,在海量历史数据上进行验证和优化,不断萃取专家知识,充分利用多维度融合带来的统计显著性(比如个别风场看似偶发的故障,在全体风场上可能有稳定的统计规律)

3)“软”测量。在工业应用中,不同过程量监测的技术可行性、精度、频度、成本差别较大,通过大数据分析,建立指标间的关联关系模型,通过易测的过程量去推断难测的过程量,提升生产过程的整体可观可控。

图3

小结

如前所述,工业大数据分析更应秉承“小数据”思维,尊重机理模型和领域知识,利用数据分析技术手段,披沙简金,释放工业大数据的价值。为更明确指导工业大数据分析软件架构,下篇将从分析算法侧重点、分析模型与机理模型融合方式、业务应用场景等3个方面分享工业大数据分析的典型范式,敬请期待。

(未完待续)

(原创:田春华 摘编自:微信公众号 昆仑科技K2Date / 编辑 严进军)

作者介绍

田春华:昆仑智汇数据科技(北京)有限公司首席数据科学家。2004年1月清华大学自动化系博士毕业。2004年-2015年在IBM中国研究院,负责数据挖掘算法研究和产品工作,在高端装备制造、石油石化、新能源、航空与港口等行业,帮助中国、亚太、欧美领先企业,成功实施资产管理、运营优化、营销洞察等各类数据分析项目。发表学术论文(长文)82篇(第一作者42篇),拥有36项专利申请(10项已授权)。研究兴趣是数据挖掘算法与应用。