工业大数据,从何做起?(2)
工业大数据,从何做起?(二)
(2016年11月5日)
过去的农机产品如拖拉机,加上一个外设如播种装置、犁地装置等,形成了一个农场设备系统,可以帮助农夫完成耕种活动。
未来的农机,在联网之后,除了耕种外,通过传感器可以在耕种的过程中感知土壤墒情,还可以联网对接天气系统、浇灌系统、种子数据库等,全面指导农夫的各项工作:根据天气决定农业活动时间,根据墒情决定如何施用水肥,甚至根据市场情况决定种什么品类农作物。
总结起来,工业大数据业务价值实现路径有二,如图所示:
图3
一是制造全生命周期业务创新(先进制造):通过大数据驱动的创新产品设计、智能制造、智能服务,实现提升产品质量、生产效率、节省成本,达到提升企业在行业内竞争力的目的。按照大数据切入的环节不同,具体又可以落实到协同设计、精益制造、智能运维等。
二是产业互联网新业务创新(制造+互联网):以智能联网的工业产品为载体承载服务产品周边生态系统的产业互联网业务,达到开创新兴市场和业务模式的目的。根据产品和所服务用户的不同,产业互联网业务将表现出多种不同的形态。
二、工业企业大数据实施路径
那么,具体到一个工业企业,要实施工业大数据,应该从何做起呢?并没有一定之规。企业需要根据自身的业务发展状况和竞争策略来决定自己的最佳实践切入点。
对行业领先者而言,企业最大的挑战不是行业内部的竞争,而是如何拓展新业务空间的问题,那么可以选择从“制造+互联网”业务创新的角度切入。
典型的例子是海尔的U+智慧生活空间,全面服务海尔家电用户在使用电器过程中的各种需求,例如烤箱的用户不仅需要烘焙的功能,还需要点心配方、原料、和其他烘焙爱好者交流,这些全部可以在U+智慧生活空间中得到满足,而海尔也借此从一个家电硬件的制造商转型成为了智慧生活服务提供商。
图4
对于面临巨大竞争压力的企业而言,更迫切的需求在于通过提质增效、提升服务水平来增加企业竞争力,因此选择“先进制造”的路径是可行的。在“先进制造”路径下,又可以根据所处行业和企业自己的特点和基础来选取一个合适的切入点。
举例说明:在陕鼓动力所在的动力透平行业,由于所服务的冶金和化工等行业需求下降,新产品的采购需求也下降,企业通过服务创新,建设远程设备运维系统,实现从制造向“制造服务”的转型,目前企业收入中服务所占比例已经超过一半;
金风科技所在的风电行业,业主关注风场整体投入产出效率,金风利用大数据技术加强风机设计,变基于典型工况的选型为根据每台风机的微观选址进行个性化的“一机一设计”;
山东临工所在的工程机械行业,液压阀等核心关键部件长期为国外垄断,订货周期长,且挤占了大量利润,要实现核心部件自主制造,必须突破质量关,因此临工采用“点穴式投入”,针对关键零部件进行了智能制造改造。
条条大路通罗马,只要把握技术为业务目标服务的本质,明确业务提升目标,实施大数据就有了一个良好的开端。
(续完)
(原创 : 陆薇 / 摘编自:微信公众号昆仑数据K2Data)