建设大数据平台,从“治理”数据谈起(8)
三、面向用户的自服务大数据治理架构自服务大数据治理架构
以用户为中心的自服务大数据治理技术架构包括五部分:数据资产管理、数据监控管理、数据准备平台、数据服务总线,消息与流数据管理。
图16
整个平台分为五块核心能力:数据资产、数据准备、数据服务总线、消息 & 流数据管理、数据监控管理。
数据资产管理是对企业数据信息统一管理也是整个平台的基础,数据准备平台是资产服务化的加工厂,它不但能将原始数据通过服务形式以用户能看懂的方式提供,也可以通过在线数据模型设计实现最终数据产品的发布,起到承上启下的作用。
数据服务总线和消息 & 流数据管理的价值层次是一致的,只是从数据时效性上面对数据进行了区分,去适应用户不同的管理和应用诉求。起到数据通道和安全管理两个核心内容。
数据监控管理有别于大数据中的数据节点管理,而是从数据管理的视角切入对数据的结构的变化、关系的变化进行管理和控制,它是数据持续发挥价值的监管者。
自服务大数据治理的关键技术
(1)人工智能的知识图谱构建
主要有三个步骤
- 基于企业元数据信息,通过自然语言处理、机器学习、模式识别等算法,以及业务规则过滤,实现知识提取;
- 以本体形式表示和存储知识,自动构建成起资产知识图谱;
- 通过知识图谱关系,利用智能搜索、关联查询手段,为最终用户提供更加精确的数据;
图17
(未完待续)
(选编自 微信公众号 大数据杂谈)