论坛与新闻
论坛与新闻

朝晖随笔(12)工业大数据的理论体系(2)

朝晖随笔(12) 工业大数据的理论体系(二)

(2018年11月7日)

6、大数据获得知识的途径:承载知识和提炼知识

用大数据获得知识有两种方式:一种就是数据本身就承载知识;一种是数据承载的是信息、需要从数据提炼出知识。

第一种典型的就是产品设计数据、各种标准、成功案例等。快速响应、个性化定制的前提和手段,就是这种知识的共享。

对于这些知识,有时候会面临的困难之一是如何找到它们。而找到这些知识本身就可能是需要获得的知识。典型的就是谷歌搜索。AI算法对解决这个问题可能是有用的。

第二种知识就是前面说的、通过建模或根因分析得到的知识。工业上对知识是有明确需求的、以至于难以达到;但机理却是相对明确的。我谈的很多方法论,其实就是在这两个方面的。下面还会提到。

7、通过大数据获得价值:转型升级才能创造蓝海

从某种意义上说,大数据创造价值就是促进知识创造价值。这些知识要用在提高质量、效率,降低成本等具体问题上,才能创造价值。

人们遇到的真正困惑,或许是如何找到这些“问题”。这些问题大概可以分成两类:一类是现有业务的痛点;第二类是转型升级以后面临新的要求。

对于业务痛点,往往是:“该做的都做了,剩下的往往是难以做的。”所以,难以找到合适的问题。对于这类困惑,大数据只是手段之一。往往要综合运用各种手段,大数据才能给创造价值。

对于第二类困惑,往往是业务本身或外部变化引发的。例如,采用了新的生产方式或技术手段、用户对质量要求提高了、数字化水平提高了、企业的业务重心转移了(创新和服务的比重增大了)等等。这些变化,我统称为“转型升级”。对于这类新的问题,大数据方法比较容易发挥作用。

数据分析曾经被认为是“没有办法的办法”。我把最近突然变热的原因,归结到智能制造相关技术引发的企业转型升级。这时,大数据技术进入了一个蓝海。大数据进入蓝海的原因,不仅是获得知识更方便等原因,更是知识的放大:把知识变成计算机可执行的代码、实现人机知识的共享,知识在互联网上实现共享,都会让知识的价值倍增。从而让“知识生产”的经济性大大提升。

总体上看,转型升级是战略问题,大数据应用是战术问题。战略重点的改变,才能给大数据的应用创造条件。否则,再好的技术都可能成为屠龙之技。

8、大数据建模分析的方法论:算法只是细节问题

谈到大数据分析与建模,很多人马上想到各种算法。在我看来,对数据分析与建模问题来说,算法问题其实是战术问题——也就是说,还需要有个战略问题,用来决定分析什么问题、分析问题的次序和路径等。CRISP_DM就是这个层面上的逻辑。我还想将其逻辑进一步简化:

1、明确业务需求;确定需求是真实的、一旦分析成功则具有可行性。

2、数据分析方法:解决问题的次序和切入点的问题。

3、分析问题的具体算法。如回归、决策树、深度学习等。

其中,前面两步做得好的话,后面的算法会比较简单。我总觉得,学术界把算法看得太重、过度重视算法技巧。技巧易于发论文,但不符合工程逻辑。

9、总结

人们关注工业大数据的终极目标是创造价值;方向是提升智能化;核心问题是知识的获取和应用。用好大数据的关键搞清楚战略和战术的关系,也就是做什么事情、做事的次序和切入点等问题。单纯从分析方法或数据角度看问题,是看不清楚问题全貌的。

(续完)

原创: 郭朝晖 蝈蝈创新随笔