工业大数据技术与架构(1)
工业大数据技术与架构(一)
(2018年12月10日)
工业大数据是工业企业的重要资产,是企业实现转型升级的核心要素。
一、引言
自动化和信息化技术近年来得到了长足的发展,特别是信息技术随着消费互联网的发展迅速进步,在全面改造第三产业的同时,也进一步与自动化技术产生融合而进入工业,为传统制造业的升级创造了技术基础。新工业革命以信息物理系统为载体,以创新商业模式为引领,以数字化、网络化、智能化为特征,其核心是将以云计算、物联网、大数据为代表的新一代信息技术与现代制造业、生产性服务业深度融合,推动产业转型升级。
工业企业多年来累积的大量工业数据业已成为企业的重要资产,为企业转型升级提供核心动力,然而,其应用也带来了广泛的挑战。从业务方面来看,工业大数据应用还处于发展初期,具有广泛示范作用的成功案例还不多。企业面对的一个挑战是如何着手及推动工业大数据应用的开发和实施,以保证所构建的系统在投产后能产生预期的作用,能收回期待的投资回报。若没有架构作为基础,将很难有效地应对这些技术和业务上的挑战。要解决不同行业之间系统的互操作性问题,不同产业之间就必须对系统的整体架构达成共识。一个通用的参考架构不仅能够为解决不同产业共有的挑战提供共同的基础,还能够在跨产业的生态系统中实现知识和经验的共享,采用可重用的技术和系统构建模块。一个广阔跨产业的生态系统,将刺激更多的技术创新,降低技术成本,加快工业大数据系统的实施。
当前,工业领域主流的架构主要是从智能制造的视角进行设计。其中,德国的工业4.0参考架构结合自身在工业装备和生产线自动化方面的领先优势,从信息技术、生命周期和价值流、企业纵向层3个维度展示了工业4.0架构和工业4.0组件模型,它更多关注的是智能工厂以及智能制造本身;美国的工业互联网参考架构则从虚拟经济和科技领域的优势出发,提出了针对工业互联网的具有跨行业适用性的参考架构,更注重工业领域的服务;中国的智能制造系统架构[1]依托制造大国的优势,从生命周期、系统层级和智能功能3个维度构建;日本的工业价值链参考框架通过多个智能制造单元的组合形成通用功能块,展现制造业产业链和工程链。
这类架构提供了与智能制造相关的技术系统的构建、开发、集成和运行的一个框架,构建了软件的应用程序和服务架构,但这些工作并未关注如何利用累积的工业大数据实现价值创造和企业转型。因此,需要针对工业大数据的特点,从基于工业大数据的价值创新创造的视角开发一种工业大数据参考架构。
为解决上述问题,综合提出了一种工业大数据参考架构,为跨产业的大数据应用提供了一个具有通用性和一致性的架构模板和方法论。该架构包含3个维度:生命周期与价值流、企业纵向层和IT价值链。
(未完待续)
(摘编自 公众微信号 优管网)