论坛与新闻
论坛与新闻

工业大数据技术与架构(5)

工业大数据技术与架构(五)

(2018年12月18日)

(2)生产与供应链领域

生产大数据不仅包括产品生产制造过程中采集的产品生产信息、订单信息、设备信息、控制信息、物料信息、人员工作排程,还包括企业内部管理信息流、资金流、产品生产上下游的供应商及客户管理等相关辅助生产管理的信息,生产数据的采集依托于企业已有资源管理、制造执行、工控管理、供应链管理、供应商管理、客户管理、商务管理等信息系统。这些数据具有时序性和强关联性。

●实现生产过程实时监控与管理及生产设备预测性维护,提升生产过程及设备管理水平,优化生产流程,并提升产品质量。现代化工业制造生产线安装有数以千计的小型传感器,探测生产设备的工作状态。此外,还可将生产制造各个环节的数据整合集聚,对生产过程建立虚拟模型,仿真并优化生产流程。

●实现个性化定制规模生产,推动现代化生产体系的建立。通过产品全生命周期内数据流转的自动化及对制造生产全过程的自动化控制和智能化控制,将促进信息共享、系统整合和业务协同,提高精准制造、高端制造、敏捷制造的能力,实现个性化定制规模生产,加速智能车间、智能工厂等现代化生产体系建立,实现智能生产。

●实现网络化协同制造及制造业共享经济。通过“互联网+”,进行生产资源在企业内或企业间的整合优化,实现企业内部的纵向协同制造或企业间的横向协同制造。通过互联网+共享经济,进行创新资源、生产能力、库存等生产资源的共享,实现制造业共享经济。

●优化工业供应链。射频识别(RFID)等电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。跟踪产品库存和销售价格,而且准确地预测全球不同区域的需求,从而运用数据分析得到更好的决策,优化供应链。

●实现需求预测,以便更好地安排进货、生产,当需求下降时,可追溯问题原因,并解决问题。

●实现客户画像与精准营销以及客户行为分析,可扩展客源,提升营销成功率及原有客户的满意度及忠诚度。

(3)运维与服务领域

运维与服务领域的数据来源有很多,主要包括:在客户允许的情况下,通过嵌在产品中的传感器采集的产品实时运行状态数据及周边环境数据;通过商务平台获得的产品销售数据、客户数据及相应的产品评价或使用反馈;客户投诉及相应处理记录;产品退货/返修记录及相应的维修记录。通过对这些数据进行分析、挖掘及预测,可帮助工业企业不断创新产品和服务,发展新的商业模式。

●通过监控、分析远程采集的产品实时运行状态数据,实现远程监控与管理、故障诊断及预测性维护等在线增值服务,可降低维护成本,提高产品利用率。

●通过分析设备的客户使用数据及周边环境数据,还可为用户提供延伸服务,扩展产品价值空间,实现以产品为核心的经营模式向“制造+服务”的模式转变。

●通过分析客户产品评价或使用反馈、客户投诉,将有用的意见融入产品的设计及产品改进中,对客户投诉进行分类处理,可提高产品质量及售后服务质量,降低投诉率,提高客户满意度及忠诚度。

●通过分析产品退货或返修原因,及时采取有效措施,可提升产品质量,降低退货率及返修率。

(未完待续)

(摘编自 公众微信号 优管网)