五个数字说清工业大数据(1)
五个数字说清工业大数据(一)
(2019年3月24日)
一个目标
一个目标就是提升智能化的水平。很多专业人士谈到大数据,往往局限于各种数据的分析及其算法。如果视野仅仅局限于这个层次,那么,就难以看到大的机会。
在笔者看来,大数据时代的机会就在于促进智能化水平的提高、带领工业界进入智能时代。换句话说:如果不与各种智能化工作联系起来,就可能会失去大数据时代的机会。
要认识这种机会,就需要正确把握智能化的含义。什么是智能化?智能化就是通过数字化和网络技术提升信息获取或决策的能力。而决策的主体可以是机器,也可以是人。我们知道,大数据促进了机器学习技术的发展,推动了新一代人工智能(AI)的发展。但智能化的内涵应该远大于人工智能(AI)。只有认识到这一点,才能看到更多的机会和可能。
某种意义上讲,智能化就是人机工作界面的改变,是借助ICT技术(信息通信技术)实现业务活动方式的创新。在信息获取、知识获取、决策、执行等环节,我们都可以采取新的工作方式。比如,在信息获取方面,当数据太多太散时,可以让机器去查找信息;数据组织得好时,就可以让人去查找信息。还比如,在知识获取方面,可以用人机协同的方式获取知识,也可以让机器自行去获取知识。
可以说,在智能化方面,我们要有想象力,不要局限于从数据中发现知识。比如,实现机器“用”知识推动设备智能化,或直接为人类提供可用的知识。现在,知识的人类用户可以是工程师,也可以是消费者。因此,工业大数据技术落地的前提常常是具体业务牵引,即所谓“先有需求,再找方法”。
一个基础
一个基础就是数据的完整性。无论是工业产品还是车间、工厂,工业对象往往被看成一个复杂的系统。当我们用数据来表征系统时,数据的完整性和相关性都特别重要。毕竟不完整的数据和不相关的数据可能会得出错误的分析结论,而工业对象都追求高度的可靠性,对错误的容忍度很低。
宝钢老专家王洪水先生认为:用数据记录生产过程时,“要向录像机录像一样”把数据收集起来,不要有断点。这是实践中行之有效、正确的指导思想。
笔者还见过有人在研究钢铁材料成分与力学性能之间的关系时,把包括微合金钢在内的多种钢种混在一起,却只考虑了C、Si、Mn、S、P等所谓的“5大元素”。这时得到的结论自然就是错的。
过去记录数据时,由于存储成本高,往往“挑重要的记录”,导致记录的信息碎片化。现在数据存储成本低,可以记录的数据多了,但是,若数据之间的关联性没有被记录下来,则数据照样是没有价值的。
(未完待续)
本文来源《中国冶金报》 作者 郭朝晖