论坛与新闻

知道大数据,却不清楚工业大数据,知识架构“欠”在哪里?(2)

知道大数据,却不清楚工业大数据,

知识架构“欠”在哪里?(二)

(2019年9月19日)

从工程实现的角度,工业智能实现的关键有如下几步:

1、定义工业场景:正如上文所提及,问题域所涉及工业场景定义的准确性和完备性决定了该问题在多大程度上被解决的可能性;

2、数据的完备性和质量:工业现场数据一般带有很多噪声,而数据范围和质量决定了后续处理的难易程度和最终结果的准确性;

3、智能应用支撑环境:工业智能应用本身就具备碎片化、个性化、专业化的特点,如何提供快速有效的应用实施环境,包括数据环境、模型研发实验环境、应用部署环境等,决定了工业智能应用的推广和客户接受速度。

依照富士康工业互联网副董事长李杰教授、天泽智云 CTO 刘宗长共同发表的《工业大数据:挖掘“不可见世界”中的价值》一文中的阐述,CPS 是一个具有清晰架构和使用流程的技术体系,针对工业大数据的特点和分析要求所构拟的技术体系,其能够实现对数据进行收集、汇总、解析、排序、分析等全套处理流程,实现对工业数据进行流水线式的实时分析能力,并在分析过程中充分考虑机理逻辑、流程关系、活动目标、商业活动等特征和要求。因此可作为工业大数据分析中的智能化体系的核心。

图1 CPS 的 5C 架构

工业大数据正是以行业模型为前提,将面向不同行业、不同场景、不同学科中的工业机理、专家经验、行业知识和最佳实践固化成为数据统计、挖掘和分析模型,将业务问题转化为数据可解的问题;以数据科学为基础,使得深度学习、迁移学习、强化学习等为代表的人工智能算法成为解决工业大数据领域诊断、预测与优化问题的得力工具;以软件服务为目的,形成可落地执行的工业大数据解决方案。

竞赛是推动创新探索、实践指导与人才发展的有效途径。美国早在 2008 年起开始探索通过竞赛方式促进大数据、人工智能与制造业融合,针对设备健康状态评估、剩余生命周期预测等问题进行方法研究和测试论证,涉及航空发动机、齿轮箱、风机测风仪、半导体、轨道交通等多个工业场景。GE 也曾经发起过多次数据竞赛,悬赏解决飞行路径规划、医疗大数据等问题,并获得解决实际问题的具体模型算法和专业人才。

三、他们如何看待智造时代下的大数据未来

为深度挖掘工业大数据的实际落地场景,探寻我国制造业转型升级的发展趋势,1 月 13 日,我们专程前往由工业和信息化部指导,中国信息通信研究院联合工业互联网产业联盟、华为、富士康、积微物联共同主办“第二届工业大数据创新竞赛”的决赛答辩现场。

在共同见证优胜团队诞生的同时,InfoQ 编辑在答辩现场也采访到了中国信息通信研究院总工程师 余晓晖,富士康工业互联网副董事长 李杰等重磅技术专家。那么,在新一轮的科技与产业变革中,他们是如何看待智造时代下的大数据未来呢?

(续完)

摘编自 微信公众号 孟靖 InfoQ