王建民:工业大数据技术综述(4)
王建民:工业大数据技术综述(四)
(2018年11月28日)
从数据流动的视角来看,企业信息化解决了工业领域“有数据”的问题,网络化解决了“能流动”的问题,工业大数据要解决数据“智能化”的问题。“信息化”能够把正确的数据在正确的时间以正确的方式传递给正确的人和机器,“智能化”则把海量的工业数据转化为信息,信息转化为知识,知识转化为科学决策,以应对和解决制造过程的复杂性和不确定性等问题,其目标在于不断提高制造资源的配置效率。
企业信息化主要解决的是数据单元传递问题,工业大数据则主要是基于数据集合分析问题。如图6所示,这是一个制造业复杂装备阶段活动示意[5],业务活动沿实线部分从上游往下游传递,它主要反映了订单、票据等数据是否正确,这是信息化过程中需要解决的核心问题。虚线主要是反馈部分,通过分析数据集发现业务规律和决策准则,然后反馈给前面的各个环节使用,从而形成数据全生命周期的闭环,这就是信息化和大数据智能化的区别,然而两者又是不可分割的。
图6 信息化与大数据:数据单元传递与数据集合分析
5、工业大数据与工业互联网
工业互联网可以从网络、数据和安全3个方面理解。其中,网络是基础,即通过工业全系统的互联互通,促进工业数据的无缝集成;数据是核心,即通过工业数据全周期的应用,实现机器弹性生产、运营管理优化、生产协同组织与商业模式创新,推动工业智能化发展;安全是保障,即通过构建涵盖工业全系统的安全防护体系,保障工业智能化的实现。工业互联网的发展体现了多个产业生态系统的融合,是构建工业生态系统、实现工业智能化发展的必由之路。
工业大数据是智能制造与工业互联网的核心,其本质是通过促进数据的自动流动解决控制和业务问题,减少决策过程带来的不确定性,并尽量克服人工决策的缺点。随着互联网与工业的深度融合,机器数据的传输方式由局域网络走向广域网络,从管理企业内部的机器拓展到管理企业外部的机器,支撑人类和机器边界的重构、企业和社会边界的重构,释放工业互联网的价值。
(未完待续)
王建民(1968?),男,博士,教授、博士生导师、清华大学信息科学技术学院(一级院系)副院长,清华大学软件学院院长,数据科学研究院副院长、管理委员会副主任,大数据系统软件国家工程实验室执行主任,工业大数据系统与应用北京市重点实验室主任。主要研究方向为大数据系统软件、工业大数据、产品全生命周期管理、业务过程管理等。
(摘编自 公共微信号 BDR 大数据期刊)