论坛与新闻

大数据的泡沫、价值和陷阱(4)

大数据的泡沫、价值和陷阱(四)

(2017年04月28日)

(5)第五问:我是否了解大数据风险与数据偏见?
大数据时代,信息意味着权利,不同层级的信息代表不同层次的权利。这使得大数据集中之后也面临着技术风险、成本风险、安全风险和管理风险等多个层面的问题,每个层级玩家面临的风险各有侧重,需要充分引起重视。大数据处理基于全新的技术泛型,新技术生态下技术本身的稳定性、成熟性、扩展性等有风险;随着数据爆炸增长需要存储、计算包括电力等资源的持续投入,面临成本风险(所以才有云计算的需求);面对大数据信息权的诱惑,黑客们的犯罪动机也比以往任何时候更强烈,黑客组织性更强,更加专业,敏感数据入侵风险急剧增加;在数据管理方面还需要面对数据缺失(大数据的分析在于全量分析,任何一方面的数据缺失,都会让算法产生偏见)、数据质量低下、被操控的假数据(如水军刷榜)等方面的问题。

(6)第六问:我是否理解并能贯彻大数据思维?
大数据时代,数据驱动决策是我们的必然选择,毕竟事实胜于雄辩,数据能最大限度地说明问题,数据能让你了解一些以前根本都不知道的事情,除了本身质量的问题,数据不会说谎,通过大数据挖掘进行量化分析有助于精细化管理和运营,这是大数据思维的核心所在。不管是企业、机构还是政府,在做大数据规划或应用之前,先问问自己,组织人员理解数据决策吗?大数据能为他们带来怎样的好处?各级领导有没有大数据决策基因或者这种思维变革的驱动力?所以从数据决策角度讲,未来大数据思维在各行各业的渗透和如火如荼的大数据系统建设不亚于一场数据爆炸时代的管理变革“启蒙运动”。这场运动由互联网企业发起并逐渐繁荣,当大数据思维在传统企业、机构和政府普及并落地应用之时,很可能就是通用人工智能时代的开始。

5. 大数据展望:当大数据傍上人工智能

最后,做一点展望,谈谈大数据和人工智能,在《深度学习的“深度”价值是什么》一文中,我提到过大数据和人工智能的共生关系,对连接主义学派来讲,没有大数据就没有智能,同样,没有人工智能的算法支持,特别是深度学习这一波技术热潮的推动,大数据的价值也很难被发掘出来。所以大数据傍上人工智能是IT技术发展的必然。另外大数据与传统商业智能技术在加速融合,如OLAP多维度分析、数据仓库等技术也在向大数据处理靠拢。大数据的核心价值在于全量数据分析,而全量数据意味着智能诞生的基础,初级智能诞生之后会给系统以反哺和回馈数据,就像AlphaGo的强化学习和自我对抗学习一样(婴幼儿自己游戏玩耍同理),通过这种自我学习迭代过程,强人工智能诞生,人类正式跨入AI时代。那个时候的若干企业大数据中心、政府大数据中心和地球上的数朵大云,将会插上智能科学的翅膀,成为AI时代的关键基础设施,到时大数据技术如何演化,国家又会呈现出怎样的社会形态,让我们拭目以待。

(续完)

(文章来源:36大数据 作者:杜圣东 )