论坛与新闻

工业大数据是构建制造型企业的新型能力(2)

工业大数据是构建制造型企业的新型能力(二)

(2018年10月15日)

“盘活存量数据、用好增量数据”,推动企业转型升级

制造型企业在信息化的每个发展阶段都会有大量的数据处理要求并且会因为大量的业务活动产生各式的数据各样,只要采用数据驱动业务的方式进行业务活动就是大数据,大数据是企业信息化发展到当前阶段的必然结果。所以工业大数据的利用不仅仅是信息化基础设施建设,更重要的是采用数据思维来管理和创新业务,大数据应是管理创新的手段,优化全业务流程和提供业务管理工具。所以制造型企业大数据应用的难点是打通企业数据采集、集成、管理、分析的产业链条,帮助业务人员养成使用数据的习惯。在这方面互联网企业走在前面,值得制造型企业学习。

2012年12月,阿里宣布在集团管理层面设立首席数据官(Chief Data Officer)岗位,负责全面推进阿里巴巴集团成为“数据分享平台”的战略并成立了数据委员会,委员会的成员是各个数据部门的领导。该数据委员会主要职责是协同不同数据部门的工作,制定整个集团数据应用的方向和规划,协同各个部门使用数据,打通商业运营、做(基础)数据、(构建)数据模型等产业链条各环节。避免传统上做数据的人不知道别人怎么用,用数据的人不知道数据怎么来的;而做数据模型不知道数据是否稳定;用数据模型的人不知道数据模型究竟是怎样的,甚至不相信数据模型的问题。

第二节 工业大数据的产生及特点

工业大数据是制造型企业创新转型的驱动力和催化剂,随着三维设计、3D打印、机器人技术等在制造型企业广泛应用。工业大数据广泛分布在产品设计、制造、物流、服役等各环节,具体如下:

数字化设计:如飞机全数字化设计:波音公司利用CATIA软件设计波音777的300万个零部件的尺寸和形状数据;

智能化制造:以智能工业机器人为典型代表的智能制造装备已经开始在多个领域得到应用;我国今年的工业机器人超过日本。

网络化监控:大型工业装备运行状态网络化远程动态监测:例如,波音737发动机在飞行中每30分钟产生10TB数据;陕鼓动力实现数百台旋转机械远程在线监测及故障诊断。

物联化管理:工业生产过程开始大量使用RFID实现零件与产品管理。

图2

工业大数据区别其他行业大数据有自身的特点和挑战:

一是多源性获取,数据分散、非结构化数据比例大:

工业大数据来源广泛且分散,有来源于产品制造现场工控网监控数据,有来源于互联网的客户、供应商数据,有来源于企业内网的经营管理数据。海量异构多源多类数据难以有效集成,语义描述困难,不能实现面向系统生命周期管理的数据协同管理;

二是数据关联性强,有关联也要有因果:

工业大数据的产生和应用都围绕产品全生命周期、企业主价值链等,数据间关联性强且分析准确性要求高。不但要利用大数据给出决策也要用大数据给出决策依据。工业大数据预测精度低,准确性和可靠性不高,无法满足安全性要求;

三是持续采集、具有鲜明的动态时空特性:

工业大数据来源于工控网络和传感设备,具有实时性强、连续性、稳定性要求高等特点,需要采用可靠的数据采集、存储、管理的工具进行管理,另外涉及国计民生领域还要求整个平台安全可控。工业大数据分析的实时性要求高,动态控制困难,量化难度大;

四是与具体工业领域紧密相关:

工业大数据产生依赖于CPS网络和智能产品,但目前面向信息物理融合系统的分析方法单一,无法实现闭环、多层次、多阶段、自比较等的综合分析;面向智能设备和智能产品的故障检测能力不足,健康预测管理水平低,无法实现面向产品可靠性的深层次分析。

原标题:工业大数据:构建制造型企业新型能力

(未完待续)

(摘编自 公众微信号 树根互联)