论坛与新闻

工业大数据——构建制造型企业新型能力(4)

工业大数据——构建制造型企业新型能力(四)

(2019年1月11日)

工业大数据的重点研究方向

为了应对工业大数据分散、形式多样、预测精度高等挑战,国内外研究机构与厂商开展了基于产品全生命周期的数据集成和管理,基于数据挖掘的数据分析应用等方面的技术研究与实践,下面分别介绍。

研究方向1:基于MBD和物联网的数据集成技术

CAX工具数据集成技术:面向产品设计过程中结构设计、电气设计、仿真、试验等过程,一方面定义产品所需标准件、材料、元器件的参数模型和实体模型及标准标准,供不同CAX工具共享使用,另一方面集中管理CAX工具输入输出参数等过程数据并形成设计知识。

智能装备数据集成技术:面向车间各类对象的实时监控和管理,底层采用传感器对环境和设备进行信息采集,采用电子标签对物料、人员、工具工装等进行标识和跟踪,通过数据采集和处理实现信息的可靠高效传输,实现人机料法环测等生产要素的状态监控和集成管理。

异构业务系统数据集成技术:面向工厂内部ERP、PDM、MES、QIS、TDM等业务系统,利用企业门户、企业服务总线、流程平台等集成工具实现各业务系统间界面、服务、流程和数据的集成,最终达到跨业务部门和业务系统的数据融合和流程贯通。

研究方向2:基于产品全生命周期数据管理技术

产品全生命周期管理不同于传统的PDM,它将分散在设计单位、生产单位、供应商、客户等地理分散、形式不同的“产品数据”通过工作流平台和产品全生命周期模型,连接为一种单一的、标准的、真正的产品信息资源的能力。它包括产品设计、仿真、试验制造的数据,还集成来自企业内外部数据,如销售、市场、质量、制造、供应商、客户使用、产品报废处理等数据,从而建立起规范的产品信息来源。

这种信息资源保存整个产品开发决策过程的信息,包括产品的特征描述、功能描述以及对设计和资源的考虑,从而跟踪整个项目进度,并为将来启动的新项目或产品改进项目提供知识。

产品全生命周期管理的关键在于产品生命周期的建模技术、集成数据环境技术和设计制造协同技术。

产品全生命周期建模技术:产品全生命周期建模的目的是建立面向产品生命周期的统一的、具有可扩充性的能表达完整信息的产品模型,该模型能随着产品研制自动扩张,并从设计模型自动映射为不同目的的模型,如可制造性评价模型,成本估算模型、可装配性模型、可维护性模型等,同时产品模型应能全面表达和评价与产品全生命周期相关的性能指标。

集成数据环境技术:产品全生命周期的数据分开存放,系统提供数据的联邦机制,分散在网络上的用户对数据进行存取时,所有数据对用户都应是透明的,所以需要一个电子仓库对分散在企业内外部产品及相关数据进行存储和增删修改操作。当然产品全生命周期数据符合大数据的4V特征,传统数据库管理系统难以支撑,需要大数据平台和技术支撑。

产品研制协同技术:异地设计与制造是指在异地异时、异构系统、异种平台间进行实时动态设计和制造,它是企业内部或供应链之间进行产品全生命周期管理的重要技术手段。

(未完待续)

(摘编自 微信公众号 东北亚安全大数据中心)